Darboux transformation for the Manin-Radul supersymmetric KdV equation
نویسنده
چکیده
In this paper we present a vectorial Darboux transformation, in terms of ordinary determinants, for the supersymmetric extension of the Korteweg-de Vries equation proposed by Manin and Radul. It is shown how this transformation reduces to the Korteweg-de Vries equation. Soliton type solutions are constructed by dressing the vacuum and we present some relevant plots. On leave of absence from Beijing Graduate School, CUMT, Beijing 100083, China Supported by Beca para estancias temporales de doctores y tecnólogos extranjeros en España: SB95-A01722297 Partially supported by CICYT: proyecto PB92-019
منابع مشابه
Pfaffian Solutions for the Manin-Radul-Mathieu SUSY KdV and SUSY sine-Gordon Equations
We reduce the vectorial binary Darboux transformation for the Manin-Radul supersymmetric KdV system in such a way that it preserves the Manin-Radul-Mathieu supersymmetric KdV equation reduction. Expressions in terms of bosonic Pfaffians are provided for transformed solutions and wave functions. We also consider the implications of these results for the supersymmetric sine-Gordon equation. On le...
متن کاملCrum Transformation and Wronskian Type Solutions for Supersymmetric KdV Equation
Darboux transformation is reconsidered for the supersymmetric KdV system. By iterating the Darboux transformation, a supersymmetric extension of the Crum transformation is obtained for the Manin-Radul SKdV equation, in doing so one gets Wronskian superdeterminant representations for the solutions. Particular examples provide us explicit supersymmetric extensions, super solitons, of the standard...
متن کاملBinary Darboux-Bäcklund Transformations for Manin-Radul Super KdV Hierarchy
We construct the supersymmetric extensions of the Darboux-Bäcklund transformations (DBTs) for the Manin-Radul super KdV hierarchy using the super-pseudo-differential operators. The elementary DBTs are triggered by the gauge operators constructed from the wavefunctions and adjoint wavefunctions of the hierarchy. Iterating these elementary DBTs, we obtain not only Wronskian type but also binary t...
متن کاملBinary Darboux-Bäcklund Transformations for the Manin-Radul Super KdV Hierarchy
We construct the supersymmetric extensions of the Darboux-Bäcklund transformations (DBTs) for the Manin-Radul super KdV hierarchy using the super-pseudo-differential operators. The elementary DBTs are triggered by the gauge operators constructed from the wave functions and adjoint wave functions of the hierarchy. Iterating these elementary DBTs, we obtain not only Wronskian type but also binary...
متن کاملNonlinear superposition Formulae for supersymmetric KdV Equation
In this paper, we derive a Bäcklund transformation for the supersymmetric Kortwegde Vries equation. We also construct a nonlinear superposition formula, which allows us to rebuild systematically for the supersymmetric KdV equation the soliton solutions of Carstea, Ramani and Grammaticos. The celebrated Kortweg-de Vries (KdV) equation was extended into super framework by Kupershmidt [3] in 1984....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997